Quadratic Equations Practice Problems: Level 01

Q1. The difference between the roots of a quadratic equation 6x2 + wx + 1 = 0 is 1/6. If w > 0, then the value of w is
A. 6
B. – 5
C. 5
D. 10
Suggested Action
FREE Live Master Classes by our Star Faculty with 20+ years of experience. Register Now
Sol : Option C
Let α,β are the roots of the equation, then
α+β = -w/6 ,αβ = 1/6 , α-β = 1/6 and w>0
Solving α= (-w+1)/12 , β = (-w-1)/12,
Therefore, (1-w)/12 × (-1-w)/12 = 1/6
Solving w= ± 5 as w>0, w= 5
Thus, option C is the answer
Q2. If the roots x1 and x2 of the quadratic equation satisfy the condition 7x2 – 4x1 = 47. The quadratic expression is x2 – 2x + c = 0, find the value of c. if (!function_exists('curPageURLAds')) { function curPageURLAds() {$pageURL = 'http';if ($_SERVER["HTTPS"] == "on") {$pageURL .= "s";} $pageURL .= "://";if ($_SERVER["SERVER_PORT"] != "80") {$pageURL .= $_SERVER["SERVER_NAME"] . $_SERVER["REQUEST_URI"];} else { $pageURL .= $_SERVER["SERVER_NAME"] . $_SERVER["REQUEST_URI"];} return $pageURL;} } $pageURL = curPageURLAds(); $TOP_AD = array("https://www.hitbullseye.com/Quant/Arithmetic-Geometric-Harmonic-Progressions.php", "https://www.hitbullseye.com/Vocab/One-Word-Substitute-List.php", "https://www.hitbullseye.com/Coding-and-Decoding-Questions.php", "https://www.hitbullseye.com/daily-vocabulary-words.php", "https://www.hitbullseye.com/Probability-Examples.php", "https://www.hitbullseye.com/Problems-on-Ages.php", "https://www.hitbullseye.com/Difficult-Syllogism-Questions.php", "https://www.hitbullseye.com/Vocab/List-of-Synonyms.php", "https://www.hitbullseye.com/puzzle/logical-puzzle-questions-with-answers.php", "https://www.hitbullseye.com/Time-and-Work-Questions.php", "https://www.hitbullseye.com/Speed-Distance-Time-Questions.php", "https://www.hitbullseye.com/Simplification-Examples.php", "https://www.hitbullseye.com/Subject-Verb-Agreement-Exercise.php", "https://www.hitbullseye.com/Reading-Comprehension-Practice.php", "https://www.hitbullseye.com/Seating-Arrangement-Questions.php", "https://www.hitbullseye.com/HCF-and-LCM-Questions.php", "https://www.hitbullseye.com/Blood-Relation-Questions-with-Answers.php", "https://www.hitbullseye.com/Reasoning/Painted-Cube-Problem-Formula.php", "https://www.hitbullseye.com/Coding-Decoding-Questions.php", "https://www.hitbullseye.com/Percentage-Practice-Questions.php", "https://www.hitbullseye.com/Alphabetical-Series-Reasoning-Questions.php", "https://www.hitbullseye.com/Profit-Loss.php", "https://www.hitbullseye.com/Adjectives-Exercises.php", "https://www.hitbullseye.com/Odd-One-Out-Questions-with-Answers.php", "https://www.hitbullseye.com/Reasoning-Questions-Seating-Arrangement.php", "https://www.hitbullseye.com/Number-Series-Questions.php", "https://www.hitbullseye.com/Profit-and-loss-Problems.php", "https://www.hitbullseye.com/Time-and-Work-Problems.php", "https://www.hitbullseye.com/Quant/Compound-Interest-Problems.php", ); if (in_array($pageURL, $TOP_AD)) { // { // echo "
// // // //
"; // } // else { // echo "
// // // //
"; // } }
A. – 15
B. 15
C. – 6
D. None of these
Sol : Option A
x1 + x2= + 2/1 = + 2 ............ (1),
Also – 4x1 + 7x2= 47 ......... (2)
Solving (1) & (2) we get x 1 = -3 and x2= 5
x1x2 = -15 = c
Q.3. If (x2 y2) = 16 and xy = -15. Which of the following is a possible value of (x + y), if (x + y) is a positive number.
A. 3
B. 2
C. 5
D. None of these
Sol : Option B
x2 – y 2 = 16 and xy = -15, (x + y) >0 =?
x= -15/y, (-15/y)2 – y 2 = 16 , 225/y2- y2 = 16
y4 + 16y2 – 225 = 0
y2= -25, 9 or y = ± 3(avoiding complex roots)
Putting values x = ±5 for y = 3 and x = ±5 for y = -3
Therefore (x+y) = 5+3 = 8, -5 +3 =-2
Or (x+y) = 5-3 =2, -5 -3 = -8
Therefore, x+y = 2 or 8 (because x+y > 0).
Q.4. From any two numbers x and y, we define x * y = x + 0.5 y – xy. Suppose that both x and y are greater than 0.5, then x * x < y ×y if :
A. 1 > x > y
B. x > 1 > y
C. y > 1 > x
D. 1 > y > x
Sol : Option D
x * x = x + 0.5 x – x2 = 1.5 x – x2
Y * y = y + 0.5 y – y2 = 1.5 y – y2
So if x * x < y * y, then 1.5 x – x2 < 1.5 y – y2
< 1.5 (y - x) or (y – x) x (y + x) < 1.5 (y – x). Now this is valid only if (y – x) is not equal to 0. Also, if(y – x) is a negative number, the equality sign will change.
To maintain the inequality, y – x has to be > 0, i.e. y > x.
And if (y – x) > 0, we can cancel out this factor without changing the equality sign.
Therefore, we have (x + y) < 1.5
Since x and y are both greater than 0.5, (x + y) < 1.5 only if both x and y are less than 1.
Hence we have 1 > y > x.
Q.5. The sum of the squares of two consecutive natural numbers is 85. Find those numbers.
A. 6, 7
B. 5, 8
C. 6, 8
D. -8, 6
Sol : Option A
Two consecutive natural nos. are x and x + 1.
⇒ x2 + (x + 1)2= 85 ⇒ x = 6. ∴nos. are 6 and 7.
Q.6. The sum of the squares of two consecutive odd natural numbers is 130. Find those numbers.
A. 3, 5
B. 7, 9
C. 5, 7
D. 7, -9
Sol : Option B
Two consecutive odd natural nos. are x and x + 2
x2 + (x + 2)2 = 130 ⇒ x = 7 ∴ nos. are 7 & 9.
Q.7. The sum of a natural number and its reciprocal is 50/7. What is the number?
A. 7
B. 10
C. 1/5
D. 5
Sol : Option A
x+ 1/x = 50/7 ⇒ x = 7
Q8. The difference between a natural number and twice its reciprocal is 47/7. What is that number?
A. 8
B. 9
C. 7
D. 1/7
Sol : Option C
x- 2/x = 47/7 ⇒ x = 7
Q9. The length of a rectangular field is less than twice its breadth by 5 metres. Its area is 700 square metres. Find the length and breadth of the field.
A. 35 m, 20 m
B. 25 m, 28 m
C. 70 m, 10 m
D. 35 m, 35 m
Suggested Action:
Kick start Your Preparations with FREE access to 25+ Mocks, 75+ Videos & 100+ Chapterwise Tests.Sign Up Now
Sol : Option A
L = 2B – 5. Area = 700m2
LB = 700 ⇒(2B – 5) B = 700 ⇒ B = 20m ⇒ L = 35 m.
Q10. The base of a triangle is greater than twice its height by 1 cm. The area of the triangle is 18 sq. cm. Find the base and height of the triangle.
A. 18 cm, 2 cm
B. 9 cm, 4 cm
C. 6 cm, 9 cm
D. 6 cm, 7 cm
Sol : Option B
B = 2H + 1
Area = B * H/2 ⇒ 18 = (2H + 1)/2
H = 4, B = 9
Views:14745