When the radius of a circle is decreased by 100%, the area of the circle:
A. decreases by 50%
B. decreases by 100%
C. increases by 100%
D. decreases by 200%
Answer : Option B
Since the radius of circle is reduced by 100%, the radius becomes 0.
Therefore, area also decreases to 0.
So, the area of the circle decreases by 100%.
Answer : Option B
Area of circle = π × 21×21×60/360 = 231cm2
A regular hexagon is inscribed in a circle of radius 10 cm. Find the area of the shaded portion. (× ≈ 3.14 ; √3 ≈ 1.73).
A. 271 cm2
B. 54.5 cm2
C. 290 cm2
D. 75 cm2
Answer : Option B
Area of circle = π × 102 = 3.14 × 100 = 314 cm2.
Area of regular hexagon = 6 × √3 / 4 × 10 × 10 = 259.5cm2.
Area of shaded region = area of circle – area of hexagon = 314 – 259.5 = 54.5cm2. .
The radius of a circle is decreased by 40%. What will be the percentage decrease in its surface area?
A. 64%
B. 36%
C. 20%
D. 10%
Answer : Option A
New area = 0.6 × 0.6 of the initial area= 0.36 of the initial area.
So, 64% decrease.